干貨!光纖光纜的基本知識(shí)大全!
來源:智能化安防弱電知識(shí)學(xué)習(xí) 編輯:小月亮 2020-07-23 16:39:12 加入收藏
本文介紹了光纜線路大衰耗點(diǎn)產(chǎn)生的原因及處理方法、線路維護(hù)測試方法及光纜線路施工接續(xù)標(biāo)準(zhǔn)化作業(yè)流程。本章還簡單的介紹了光纜的組成結(jié)構(gòu)、命名方法及光纖的標(biāo)準(zhǔn)色譜排列順序。很強(qiáng)大!
第一節(jié) 光纜線路大衰耗點(diǎn)產(chǎn)生的原因及處理方法
在光纜線路的施工中,光纜線路的衰耗指標(biāo)是一項(xiàng)重要的考核指標(biāo),不但要考核施工完畢的光纜線路的光纖平均損耗系數(shù),還要考核光纜線路光纖散射曲線,光纜線路的平均損耗系數(shù)和總損耗不但要符合設(shè)計(jì)要求,還要符合施工規(guī)范和驗(yàn)收標(biāo)準(zhǔn)的指標(biāo)要求,而且要求光纖散射曲線比較均勻,曲線上不應(yīng)出現(xiàn)較大的衰耗臺(tái)階,以保證光纜線路的光特性技術(shù)指標(biāo)符合施工規(guī)范和驗(yàn)收標(biāo)準(zhǔn)的要求。
一、光纜大衰耗點(diǎn)產(chǎn)生的幾種現(xiàn)象和原因
1.1敷設(shè)時(shí)產(chǎn)生的大衰耗點(diǎn)
在光纜施工中,由于光纜敷設(shè)長度一般在2~3KM直埋敷設(shè)時(shí),穿越的障礙物較多,在施工中,敷設(shè)人員較多,敷設(shè)距離較遠(yuǎn),難以保證所有敷設(shè)人員協(xié)調(diào)行動(dòng),特別是通過障礙物較多時(shí),如:穿 越防護(hù)鋼管,拐彎、上下坡等,從而出現(xiàn)俗稱的光纜打背扣(出現(xiàn)死彎)現(xiàn)象,對(duì)光纜造成嚴(yán)重傷害,一旦發(fā)生死彎現(xiàn)象,此處必然會(huì)出現(xiàn)一個(gè)大衰耗點(diǎn),嚴(yán)重的會(huì)發(fā)生部分或全部光纖斷裂現(xiàn)象,這是光纜 施工中容易出現(xiàn)的故障現(xiàn)象。此外,在敷設(shè)光纜時(shí),光纜端頭的光纜最容易受到損傷,在接續(xù)時(shí),往往在接續(xù)點(diǎn)處顯示有較大衰耗值,此時(shí),即使多次重復(fù)熔接,也不能降低接續(xù)損耗值,從而形成一個(gè)較大的衰耗點(diǎn)。
1.2接續(xù)過程中產(chǎn)生的大衰耗點(diǎn)
在光纜接續(xù)過程中,產(chǎn)生大衰耗點(diǎn)是經(jīng)常發(fā)生的,我們一般用OTDR(光時(shí)域反射儀)進(jìn)行監(jiān)測,即每熔接一根光纖,都用OTDR測試一下熔接點(diǎn)的衰耗值,具體測試時(shí),采用雙向監(jiān)測法,由于光纖制造過程中存在的差異性,兩根光纖不可能完全一致,總是存在模場直徑不一致現(xiàn)象,從而導(dǎo)致了用OTDR所測的損耗值并不是接續(xù)點(diǎn)的實(shí)際損耗值,其數(shù)值有正有負(fù),一般用雙向測試值的算術(shù)平均值作為實(shí)際衰耗值。在接續(xù)時(shí),一般用實(shí)時(shí)監(jiān)測法,基本能保證熔接損耗達(dá)到控制目標(biāo),但經(jīng)常產(chǎn)生大損耗點(diǎn)的原因是在熔接完畢后進(jìn)行光纖收容時(shí),部分光纖受壓或彎曲半徑過小,即形成一個(gè)大衰耗點(diǎn)。因?yàn)?550nm波長的光纖對(duì)微彎損耗非常敏感,光纖一旦受壓,即產(chǎn)生一個(gè)微彎點(diǎn),或盤纖時(shí),彎曲半徑過小,光纖信號(hào)在此處也產(chǎn)生較大的衰耗,表現(xiàn)在光纖后向散射曲線上,就形成了一個(gè)較大的衰耗臺(tái)階;另外,一個(gè)比較容易忽視的原因是光纜接頭盒組裝完成后,固定接頭盒和固定光纜時(shí),由于光纜在接頭盒內(nèi)固定的不是很牢固,造成光纜擰轉(zhuǎn),使光纖束管變形,由于光纖受壓,造成光纖衰耗值急劇增加,形成衰耗臺(tái)階。
1.3運(yùn)輸和裝卸造成的大衰耗點(diǎn)
在光纜運(yùn)輸?shù)绞┕がF(xiàn)場時(shí),由于現(xiàn)場環(huán)境比較惡劣,特別是敷設(shè)鐵路通信光纜時(shí),吊車往往無法到達(dá)施工現(xiàn)場,此時(shí),常常是通過人力裝卸光纜,在光纜卸下的過程中,外層光纜經(jīng)常受到損傷,原因是光纜盤直徑過小,導(dǎo)致外層光纜離地面距離過近,由于現(xiàn)場地面土質(zhì)軟硬不一,崎嶇不平,在滾動(dòng)光纜盤的過程中,光纜盤陷入地面,導(dǎo)致外層光 纜被地面硬物硌壞,主要原因是部分廠家為降低生 產(chǎn)成本,采用較小的光纜盤。此外,光纜盤未用木板進(jìn)行包封(有些是鐵架光纜盤,無法用木板進(jìn)行包封),而僅用塑料布在光纜外層進(jìn)行包裹,或者是單盤測試后,光纜盤包封未恢復(fù),起不到應(yīng)有的防護(hù)作用,當(dāng)光纜外層被石頭等硬物硌傷后,光纖在束管中受壓,即產(chǎn)生一個(gè)衰耗臺(tái)階,表現(xiàn)在光纖后向散射曲線上,就形成一個(gè)較大的衰耗點(diǎn)。
1.4成端過程中產(chǎn)生的大衰耗點(diǎn)
在光纜成端過程中,也經(jīng)常會(huì)產(chǎn)生大衰耗點(diǎn)。在成端時(shí),由于一般不進(jìn)行熔接損耗監(jiān)測,僅憑經(jīng)驗(yàn)操作,因此,產(chǎn)生大衰耗點(diǎn)的幾率也大增。此外,在光纖熔接后安裝收容盤時(shí),往往造成收容盤附近 的光纖束管彎曲半徑過小或造成光纖束管擰轉(zhuǎn)變形,使光纖在此處產(chǎn)生一個(gè)較大的衰耗點(diǎn),此類大衰耗點(diǎn)一般比較隱蔽,不像線路中間的大衰耗點(diǎn)用OTDR可以直接測出。
二、光纜大衰耗點(diǎn)的查找定位和處理
2.1一般產(chǎn)生大衰耗點(diǎn)的位置
光纜接續(xù)完成后,我們一般要對(duì)整個(gè)中繼段用OTDR進(jìn)行測試,通過測試,可以檢驗(yàn)接續(xù)完的光纜中繼段的光特性是否符合施工規(guī)范和驗(yàn)收標(biāo)準(zhǔn)的要求,主要從以下幾個(gè)方面進(jìn)行考核:中繼段全程 總衰耗是否小于設(shè)計(jì)規(guī)定(也就是平均衰耗系數(shù)是否小于設(shè)計(jì)規(guī)定值);中繼段接頭雙向平均衰耗值是否小于驗(yàn)收標(biāo)準(zhǔn)和設(shè)計(jì)要求;中繼段后向散射曲線是否斜率均勻,曲線平滑,除正常的接頭衰耗點(diǎn)的小臺(tái)階外,曲線上應(yīng)無大衰耗臺(tái)階。利用OTDR進(jìn)行光中繼段測試和人衰耗點(diǎn)定位時(shí),首先應(yīng)正確地設(shè)置儀表的測試參數(shù),諸如測試量程、測試波長、脈沖寬度、折射率和平均化處理時(shí)間等。對(duì)測試量程的設(shè)定,一般根據(jù)中繼段長度,選擇合適的量程,使整個(gè)中繼段曲線占據(jù)整個(gè)顯示 屏幕的2/3為宜;測試波長根據(jù)系統(tǒng)采用的波長確定,對(duì)長途干線光纜一般為1310nm和1550nm折射率根據(jù)使用廠家的光纖折射率設(shè)定;脈沖寬度是一個(gè)重要的設(shè)置參數(shù),脈沖寬度過小,測試的動(dòng)態(tài)范圍太小,不能完整地測試整個(gè)曲線,表現(xiàn)為曲線末端噪聲信號(hào)大,所得到的曲線質(zhì)量差;脈沖寬度過大,測試的范圍越大,但測試的精確度越差,一般根據(jù)被測中繼段長度,選擇一個(gè)合適的測試脈沖寬度,既要考慮測試距離,還要考慮測試精度,通過試測,選擇一個(gè)合適的脈沖寬度;平均化時(shí)間的設(shè)定根據(jù)平均化的曲線質(zhì)量試驗(yàn)確定,使平均化后的曲線尾端上無明顯毛刺即可。為了精確地確定線路上光纖故障點(diǎn)的位置,可利用OTDR分析軟件對(duì)儀表測試出的曲線進(jìn)行分析,一般有接頭盒內(nèi)故障和纜身故障兩種情況。
2.2大衰耗點(diǎn)的處理
首先確定大衰耗點(diǎn)是否是接頭位置,一般在接頭位置,所有光纖均有或大或小的衰耗臺(tái)階,可將多條光纖的曲線同時(shí)分析,可看到所有曲線在接頭點(diǎn)均有大小不等的臺(tái)階,我們可對(duì)各光纖同一位置的接頭雙向衰耗值進(jìn)行測試和計(jì)算,對(duì)大于指標(biāo)要求的做好記錄,并安排對(duì)接頭位置的大衰耗點(diǎn)打開接頭盒進(jìn)行處理。對(duì)不是接頭位置的部分光纖的大衰耗點(diǎn),我們將多條曲線同時(shí)分析可看到有的曲線在此點(diǎn)有衰耗臺(tái)階,有的就沒有衰耗臺(tái)階,據(jù)此可以判斷,這不是接頭位置的故障,而是光纜線路中間光纜有故障。對(duì)接頭處的故障,其位置比較好定位,對(duì)非接頭位置的故障,定位比較困難,一般原則是對(duì)離測試端較近的故障點(diǎn),可在端站測試,利用OTDR測出故障點(diǎn)離最近接頭點(diǎn)的距離,對(duì)離測試點(diǎn)較遠(yuǎn)的故障點(diǎn),由于距離遠(yuǎn),測試的精確度相對(duì)下降,定位準(zhǔn)確較困難,可在就近接頭盒處打開,接入 OTDR進(jìn)行測試,測出故障點(diǎn)的距離后,并結(jié)合施工原始資料記錄的各種余留,根據(jù)直埋徑路情況,實(shí)地丈量出故障點(diǎn)的大致位置,一般可定位在十幾米 的范圍內(nèi),這樣開挖的范圍就比較小,節(jié)省了施工費(fèi)用,縮短了處理故障的時(shí)間。對(duì)接頭處的大衰耗點(diǎn),我們采用打開接頭盒進(jìn)行重新熔接處理,用OTDR實(shí)時(shí)監(jiān)測,直到接續(xù)損耗達(dá)到要求。有時(shí)經(jīng)多次熔接,接續(xù)損耗達(dá)不到要求,這時(shí)就要檢查是否光纖束管變形引起光纖受壓,盤纖盤留時(shí)光纖彎曲半徑是否過小,光纖是否受壓等。經(jīng)這些檢查后,如果還不能達(dá)到要求,就要考慮接頭盒前后的光纜是否有問題。因?yàn)槎祟^的光纜在施工中比較容易受到損傷,這時(shí)就要再截去一段光纜重新熔接全部光纖。為了避免出現(xiàn)此類問題,我們?cè)诮永m(xù)前,可仔細(xì)檢查接頭余留光纜,對(duì)可疑端頭光纜采取多截去一部分的做法,以避免此類問題出現(xiàn)。對(duì)線路中間的光纜大衰耗點(diǎn)的處理,在找到故障點(diǎn)后,可發(fā)現(xiàn)此類故障或者是光纜出現(xiàn)過打背扣現(xiàn)象,或者是光纜受到損傷,如被石頭等硬物硌傷使光纜出現(xiàn)凹進(jìn)、壓扁等變形現(xiàn)象,光纖束管變形而導(dǎo)致光纖受壓,產(chǎn)生大衰耗點(diǎn),或者是其它外力 因素造成光纜受損。處理時(shí),可把此段光纜截去從新熔接一般經(jīng)此處理,大衰耗點(diǎn)基本消失。對(duì)在施工時(shí)發(fā)現(xiàn)的打背扣故障點(diǎn),應(yīng)住故障點(diǎn)做好適當(dāng)余留,以便處理。對(duì)受損嚴(yán)重的,加接頭盒處理時(shí),可剝開光纜外護(hù)套,對(duì)有變形的束管進(jìn)行處理,必要時(shí)對(duì)受損束管的光纖進(jìn)行接續(xù)。測試點(diǎn)應(yīng)聯(lián)系現(xiàn)場熔接人員分別在熔接完畢后進(jìn)行一次測試,光纖盤留后進(jìn)行一次測試,接頭盒緊固密封后進(jìn)行一次測試,經(jīng)測試點(diǎn)測試確認(rèn)衰耗點(diǎn)故障消失后,現(xiàn)場人員方可撤離。
第二節(jié) 線路維護(hù)測試儀表的使用方法
光纖及光纜線路測試,從光纜線路的維護(hù)工作出發(fā),考慮需要與可能的測試項(xiàng)目與手段,從當(dāng)前的實(shí)際出發(fā)定出必不可少的測試項(xiàng)目。它包括有:單盤光纜測試,光纜線路中繼段測試,光纜線路中繼段故障搶修測試等。為了能更好地使用儀表和正確地分析數(shù)據(jù),本節(jié)對(duì)經(jīng)常使用的關(guān)鍵性儀表光時(shí)域反射儀(OTDR)做比較詳細(xì)的介紹,對(duì)測得數(shù)據(jù)的管理與分析進(jìn)行探討性的論述。這一切都是光纜線路維護(hù)的關(guān)鍵所在
一.人工設(shè)置測量參數(shù):
1.1波長選擇(λ):
因不同的波長對(duì)應(yīng)不同的光線特性(包括衰減、微彎等),測試波長一般遵循與系統(tǒng)傳輸通信波長相對(duì)應(yīng)的原則,即系統(tǒng)開放1550波長,則測試波長為1550nm。(OTDR測試波長選項(xiàng)只有1550,1310兩個(gè)模式,一般我們測試時(shí)都選用1550進(jìn)行測試,因?yàn)?550波長對(duì)光纖衰減的變化比1310更敏感。) | 國內(nèi)G
1.2脈寬:
脈寬越長,動(dòng)態(tài)測量范圍越大,測量距離更長,但在OTDR曲線波形中產(chǎn)生盲區(qū)更大;脈寬越小,測量范圍越小但可減小盲區(qū)。同時(shí)測量到的數(shù)據(jù)也更全面。測試的距離越大所要選用的脈寬也越大,通常正常情況下10公里以內(nèi)脈寬設(shè)置為10ns或30ns都可以進(jìn)行有效的數(shù)據(jù)采集,如果光纖質(zhì)量嚴(yán)重下降就要調(diào)整更大的脈寬來實(shí)現(xiàn)數(shù)據(jù)的測量。
1.3測量范圍
OTDR測量范圍是指OTDR獲取數(shù)據(jù)取樣的最大距離,此參數(shù)的選擇決定了取樣分辨率的大小。最佳測量范圍為待測光纖長度1.5~2倍距離之間。
1.4平均時(shí)間:
由于后向散射光信號(hào)極其微弱,一般采用統(tǒng)計(jì)平均的方法來提高信噪比,平均時(shí)間越長,信噪比越高。例如,3min的獲得取將比1min的獲得取提高0.8dB的動(dòng)態(tài)。但超過10min的獲得取時(shí)間對(duì)信噪比的改善并不大。一般平均時(shí)間不超過3min。
1.5光纖參數(shù):
光纖參數(shù)的設(shè)置包括折射率n和后向散射系數(shù)n和后向散射系數(shù)η的設(shè)置。折射率參數(shù)與距離測量有關(guān),后向散射系數(shù)則影響反射與回波損耗的測量結(jié)果。這兩個(gè)參數(shù)通常由光纖生產(chǎn)廠家給出。一般折射率國家統(tǒng)一標(biāo)準(zhǔn)1310SM為1.46500、1360-1510SM為1.46500、1550SM為1.47180、1625SM為1.46500一般散色系數(shù)國家統(tǒng)一標(biāo)準(zhǔn)1310SM為-79.0、1360-1510SM為-81.0、1550SM為-81.0、1625SM為-81.0
參數(shù)設(shè)置好后,OTDR即可發(fā)送光脈沖并接收由光纖鏈路散射和反射回來的光,對(duì)光電探測器的輸出取樣,得到OTDR曲線,對(duì)曲線進(jìn)行分析即可了解光纖質(zhì)量。
二.經(jīng)驗(yàn)與技巧光纖質(zhì)量的簡單判別:
2.1光纖質(zhì)量的簡單判別:
正常情況下,OTDR測試的光線曲線主體(單盤或幾盤光纜)斜率基本一致,若某一段斜率較大,則表明此段衰減較大;若曲線主體為不規(guī)則形狀,斜率起伏較大,彎曲或呈弧狀,則表明光纖質(zhì)量嚴(yán)重劣化,不符合通信要求。
2.2波長的選擇和單雙向測試:
1550波長測試距離更遠(yuǎn),1550nm比1310nm光纖對(duì)彎曲更敏感,1550nm比1310nm單位長度衰減更小、1310nm比1550nm測的熔接或連接器損耗更高。在實(shí)際的光纜維護(hù)工作中一般對(duì)兩種波長都進(jìn)行測試、比較。對(duì)于正增益現(xiàn)象和超過距離線路均須進(jìn)行雙向測試分析計(jì)算,才能獲得良好的測試結(jié)論。
2.3接頭清潔:
光纖活接頭接入OTDR前,必須認(rèn)真清洗,包括OTDR的輸出接頭和被測活接頭,否則插入損耗太大、測量不可靠、曲線多噪音甚至使測量不能進(jìn)行,它還可能損壞OTDR。避免用酒精以外的其它清洗劑或折射率匹配液,因?yàn)樗鼈兛墒构饫w連接器內(nèi)粘合劑溶解。
2.4折射率與散射系數(shù)的校正:
就光纖長度測量而言,折射系數(shù)每0.01的偏差會(huì)引起7m/km之多的誤差,對(duì)于較長的光線段,應(yīng)采用光纜制造商提供的折射率值。
2.5鬼影的識(shí)別與處理:
在OTDR曲線上的尖峰有時(shí)是由于離入射端較近且強(qiáng)的反射引起的回音,這種尖峰被稱之為鬼影。識(shí)別鬼影:曲線上鬼影處未引起明顯損耗;沿曲線鬼影與始端的距離是強(qiáng)反射事件與始端距離的倍數(shù),成對(duì)稱狀。消除鬼影:選擇短脈沖寬度、在強(qiáng)反射前端(如OTDR輸出端)中增加衰減。若引起鬼影的事件位于光纖終結(jié),可"打小彎"以衰減反射回始端的光。
2.6正增益現(xiàn)象處理:
在OTDR曲線上可能會(huì)產(chǎn)生正增益現(xiàn)象。正增益是由于在熔接點(diǎn)之后的光纖比熔接點(diǎn)之前的光纖產(chǎn)生更多的后向散光而形成的。事實(shí)上,光纖在這一熔接點(diǎn)上是熔接損耗的。常出現(xiàn)在不同模場直徑或不同后向散射系數(shù)的光纖的熔接過程中,因此,需要在兩個(gè)方向測量并對(duì)結(jié)果取平均作為該熔接損耗。在實(shí)際的光纜維護(hù)中,也可采用≤0.08dB即為合格的簡單原則。
2.7附加光纖的使用:
附加光纖是一段用于連接OTDR與待測光纖、長300~2000m的光纖,其主要作用為:前端盲區(qū)處理和終端連接器插入測量。一般來說,OTDR與待測光纖間的連接器引起的盲區(qū)最大。在光纖實(shí)際測量中,在OTDR與待測光纖間加接一段過渡光纖,使前端盲區(qū)落在過渡光纖內(nèi),而待測光纖始端落在OTDR曲線的線性穩(wěn)定區(qū)。光纖系統(tǒng)始端連接器插入損耗可通過OTDR加一段過渡光纖來測量。如要測量首、尾兩端連接器的插入損耗,可在每端都加一過渡光纖。
三.測試誤差的主要因素
3.1設(shè)定儀表的折射率偏差產(chǎn)生的誤差。
不同類型和廠家的光纖的折射率是不同的。使用OTDR測試光纖長度時(shí),必須先進(jìn)行儀表參數(shù)設(shè)定,折射率的設(shè)定就是其中之一。當(dāng)幾段光纜的折射率不同時(shí)可采用分段設(shè)置的方法,以減少因折射率設(shè)置誤差而造成的測試誤差。
3.2量程范圍選擇不當(dāng)
OTDR儀表測試距離分辯率為1米時(shí),它是指圖形放大到水平刻度為25米/格時(shí)才能實(shí)現(xiàn)。儀表設(shè)計(jì)是以光標(biāo)每移動(dòng)25步為1滿格。在這種情況下,光標(biāo)每移動(dòng)一步,即表示移動(dòng)1米的距離,所以讀出分辯率為1米。如果水平刻度選擇2公里/每格,則光標(biāo)每移動(dòng)一步,距離就會(huì)偏移80米。由此可見,測試時(shí)選擇的量程范圍越大,測試結(jié)果的偏差就越大。
3.3脈沖寬度選擇不當(dāng)在脈沖幅度相同的條件下,脈沖寬度越大,脈沖能量就越大,此時(shí)OTDR的動(dòng)態(tài)范圍也越大,相應(yīng)盲區(qū)也就大。
3.4平均化處理時(shí)間選擇不當(dāng) OTDR測試曲線是將每次輸出脈沖后的反射信號(hào)采樣,并把多次采樣做平均處理以消除一些隨機(jī)事件,平均化時(shí)間越長,噪聲電平越接近最小值,動(dòng)態(tài)范圍就越大。平均化時(shí)間越長,測試精度越高,但達(dá)到一定程度時(shí)精度不再提高。為了提高測試速度,縮短整體測試時(shí)間,一般測試時(shí)間可在0.5~3分鐘內(nèi)選擇。
3.5光標(biāo)位置放置不當(dāng)光纖活動(dòng)連接器、機(jī)械接頭和光纖中的斷裂都會(huì)引起損耗和反射,光纖末端的破裂端面由于末端端面的不規(guī)則性會(huì)產(chǎn)生各種菲涅爾反射峰或者不產(chǎn)生菲涅爾反射。如果光標(biāo)設(shè)置不夠準(zhǔn)確,也會(huì)產(chǎn)生一定誤差。
四.熔接機(jī)顯示推斷衰耗與實(shí)際OTDR測試的區(qū)別
從目前的熔接機(jī)情況看, 熔接機(jī)所顯示的數(shù)據(jù)配合觀察光纖接頭斷面情況, 能夠粗略估計(jì)光纖接續(xù)點(diǎn)損耗的狀況, 但不能精確到目前我國所要求的光纖接續(xù)損耗指標(biāo)的數(shù)量級(jí)。目前的熔接機(jī)接續(xù)是通過對(duì)光纖X軸和Y軸方向的錯(cuò)位調(diào)整,在軸心錯(cuò)位最小時(shí)進(jìn)行熔接的,這種能調(diào)整軸心的方法稱為纖芯直視法, 這種方法不同于功率檢測法,現(xiàn)場是無法知道接頭損耗確切數(shù)值的。但是在整個(gè)調(diào)整軸心和熔接接續(xù)過程中, 通過攝像機(jī)把探測到所熔接纖芯狀態(tài)的信息送到熔接機(jī)的專用程序中,可以計(jì)算出接續(xù)后的損耗值。但它只能說明光纖軸心對(duì)準(zhǔn)的程度,并不含有光纖本身的固有特性所影響的損耗。而OTDR的測試方法是后向散射法,它包含有光纖參數(shù)的不同形成反射的損耗。比較上述兩種測試原理,兩者有很大區(qū)別。通過實(shí)踐證明,兩種方法測出數(shù)據(jù)一致性也較差,通過最近幾年對(duì)干線工程接續(xù)測試發(fā)現(xiàn),很多情況下熔接機(jī)顯示損耗很小(小于0.05dB)甚至為零,但OTDR測試則大于0.08dB,且沒發(fā)現(xiàn)有對(duì)應(yīng)的規(guī)律。現(xiàn)場接續(xù)接頭熔接衰耗標(biāo)準(zhǔn)應(yīng)按OTDR測試值為準(zhǔn)。
第三節(jié) 光纜的基本介紹及光纜線路施工接續(xù)標(biāo)準(zhǔn)化作業(yè)流程
一、光纜的基本介紹
1.1光纜的基本組成結(jié)構(gòu)
光纜的基本由五部分組成:外護(hù)套、內(nèi)護(hù)套、纖芯束管、加強(qiáng)芯、填充物。
1.2光纜的命名方法
光纜命名的方法由五部分組成
I、分類的代號(hào)及意義:
GY—通信用室外光纜;GR—通信用軟光纜;GJ—通信用室內(nèi)光纜;GS—通信設(shè)備內(nèi)光纜;GH—通信用海底光纜;GT—通信用特殊光纜。
?、?、加強(qiáng)構(gòu)件的代號(hào)和意義:
無符號(hào)—金屬加強(qiáng)件;F—非金屬加強(qiáng)件;
G—金屬重型加強(qiáng)件;H—非金屬重型加強(qiáng)件。
III、派生特性的代號(hào)及意義:
B—扁平式結(jié)構(gòu);Z—自承式結(jié)構(gòu);T—填充式結(jié)構(gòu)。
?、?、護(hù)套代號(hào)及意義:
Y—聚乙烯護(hù)套;V—聚氯乙烯護(hù)套;U—聚氨酯護(hù)套;A一鋁_聚乙烯粘結(jié)護(hù)層;L—鋁護(hù)套;G—鋼護(hù)套;Q—鉛護(hù)套;S—鋼_鋁_聚乙烯綜合護(hù)套
V外護(hù)層的代號(hào)及意義:
例如:GY TA53型光纜為:通信用室外填充式結(jié)構(gòu)鋁_聚乙烯粘結(jié)護(hù)層單鋼絲皺紋縱包聚乙烯外護(hù)套光纜
1.3光纜標(biāo)準(zhǔn)色譜排列順序
二、光纜線路施工接續(xù)標(biāo)準(zhǔn)化作業(yè)流程
光纖的接續(xù)采用高精度的新型全自動(dòng)光纖熔接機(jī)進(jìn)行電弧熔。通過光時(shí)域反射儀進(jìn)行光纖熔接質(zhì)量監(jiān)測,對(duì)整個(gè)接續(xù)過程進(jìn)行有效的質(zhì)量控制。因此光纖熔接、盤留、監(jiān)測、接頭盒的密封是光纖接續(xù)的關(guān)鍵。光纖接續(xù)方法是電弧熔接法,光纖自身熔化合為一體,無須外界物質(zhì),接續(xù)損耗小,長期穩(wěn)定,可靠性好。采用OTDR(光時(shí)域反射儀)進(jìn)行現(xiàn)場接續(xù)損耗監(jiān)測。接頭盒內(nèi)增加了光纖束管預(yù)留盤工藝,通過光纖束管的預(yù)留來抵消熱脹冷縮時(shí)光纜的伸縮給光纜接頭帶來的影響,從而確保了整個(gè)光纜接頭的穩(wěn)定性和傳輸質(zhì)量。光纖接續(xù)后將A、B兩側(cè)光纖同時(shí)壓花盤留,盤留圈數(shù)為偶數(shù),以達(dá)到相互抵消阻力的作用,從根本上解決扭力對(duì)光纖接頭的影響。
熔接原理
2.1光纖接續(xù)工序。
2.1.1端面制備:光纖接續(xù)之前,使光纖端面形成與軸線垂直的鏡面,這是利用脆性玻璃的應(yīng)力斷裂原理來實(shí)現(xiàn)的。
2.1.2對(duì)準(zhǔn)方法有監(jiān)控光功率的方法(功率監(jiān)控法)及直接觀察纖芯位置法(纖芯直視法)。
2.1.3熔接: 電弧熔接使光纖在電弧作用下自身熔化合為一體達(dá)到光纖接續(xù)的目的。
2.1.4增強(qiáng): 必須對(duì)光纖熔接部位增強(qiáng)以確保接續(xù)處具有普通光纖同等以上的可靠性,因此采用熱可縮加強(qiáng)管補(bǔ)強(qiáng)。
2.2光纖接續(xù)損耗的測量方法
利用OTDR后向散射法。用此方法能測量光纖的衰減、衰減常數(shù)、光纖接續(xù)損耗、光纖長度等。
2.3光纖束及光纖的盤留
2.3.1 光纜由于受溫度等外力影響,產(chǎn)生熱脹冷縮現(xiàn)象,對(duì)光纜內(nèi)部結(jié)構(gòu)帶來一定影響,不同材質(zhì)組成的光纜結(jié)構(gòu)在溫度的變化下,產(chǎn)生出不同的伸縮變化。影響光纜接頭的穩(wěn)定性和傳輸質(zhì)量,針對(duì)以上情況,在光纜接頭盒內(nèi)應(yīng)該進(jìn)行光纖束管預(yù)盤留,通過光纖束管的預(yù)留來抵消熱脹冷縮現(xiàn)象給光纜接頭帶來的影響,從而確保整個(gè)接頭的穩(wěn)定性和傳輸質(zhì)量。
2.3.2 由于應(yīng)用環(huán)境的不同,部分光纖接頭在使用一段時(shí)間后,會(huì)出現(xiàn)損耗增大,甚至出現(xiàn)斷纖現(xiàn)象,維護(hù)帶來很大的影響。通過分析,發(fā)現(xiàn)產(chǎn)生上述現(xiàn)象的主要原因是光纖盤留彎曲半徑偏小和光纖在盤留時(shí)產(chǎn)生扭力,其中光纖盤留產(chǎn)生的扭力對(duì)其影響更大。盤留時(shí)應(yīng)將A、B兩側(cè)光纖同時(shí)壓花盤留,盤留圈數(shù)盡量控制為偶數(shù),以達(dá)到相互抵消扭力的作用,如盤留圈數(shù)是奇數(shù)應(yīng)將扭度控制在360°以內(nèi)。
2.4 光纖熔接流程
2.4.1 準(zhǔn)備工作流程
2.4.2光纖接續(xù)測試流程
2.5工藝操作
2.5.1準(zhǔn)備工作
2.5.1-1平整接頭場地,將兩側(cè)的光纜引出地面,用棉紗擦去光纜外護(hù)套上污泥,(距端頭2m),用鋼鋸鋸去兩側(cè)端頭(約100mm)。
2.5.1-2檢查工具將所用到的工具整理擺放整齊,檢查熔接機(jī)并做放電實(shí)驗(yàn)。
2.5.1-3把已理直的光纜架設(shè)在工作臺(tái)兩側(cè)的固定支架上。
見圖2.1。
2.5.2護(hù)層開剝
2.5.2-1 將2只內(nèi)徑尺寸與光纜外徑尺寸相符擋圈在兩側(cè)光纜上各套入一只待用。
2.5.2-2距光纜端頭1300mm處,用專用切割刀環(huán)切外護(hù)套一周,然后輕折幾次使環(huán)切處折斷,往端口側(cè)用力抽去,裸露內(nèi)護(hù)套。
見圖.2-2
2.5.2-3外護(hù)套連接處開剝
見圖.2-2。
2.5.2-4內(nèi)護(hù)套連接處開剝
見圖2.5.2-4。
2.5.3清潔纜芯及光纖
2.5.3-1從光纜纜芯端頭松解包層至護(hù)套切口處,并用刀片將油膏包層割除,裸露光纖或塑管以及填充物,加強(qiáng)芯等。
2.5.3-2依次用棉紗、清洗劑和酒精棉將裸露光纖或塑管,加強(qiáng)芯上油膏擦凈,并剪去填充物等。
2.5.4連接支架、加強(qiáng)芯安裝
2.5.4-1在內(nèi)護(hù)套切口處保留加強(qiáng)芯60mm長,其余部分剪去,見圖2.5.4-1。
2.5.4-2將光纜連接支架上的光纜夾箍緊固在兩端光纜上,夾箍距外護(hù)套切口5mm。(如纜身小于夾箍內(nèi)孔直徑,應(yīng)在該部位纏繞若干層橡膠自粘帶)。
2.5.4-3將光纜加強(qiáng)芯穿入支架孔內(nèi)固定
2.5.5預(yù)留盤、盤留板安裝
2.5.5-1按順序檢查光纖的排列,把兩側(cè)光纖分開理順、編號(hào)。
2.5.5-2將已處理擦凈的帶束管的光纖A、B兩端分別置入預(yù)留盤中,沿著引入口預(yù)留一個(gè)整圈(光纖長度約500~600mm),然后再從原引入處引入至上面的光纖盤留板上。
2.5.5-3在光纖盤留板引入口處,用塑管專用割刀將光纖束管環(huán)切一周,輕輕折斷并抽去露出光纖。
2.5.5-4用清洗劑、酒精棉紙擦凈光纖上油膏,把光纖放置在盤留板的引入槽內(nèi),用綁扎帶綁扎固定。見圖2.6。
2.5.6光纖接續(xù)
2.5.6-1光纖接續(xù)時(shí)按束管和色譜順序編號(hào)。
2.5.6-2光纖涂覆層開剝3-5cm
2.5.6-3光纖端面的制備和接續(xù):
1)用光纖切割刀制備端面,裸纖。
2)將光纖放入熔接機(jī)熔接。
3)注意觀察兩根光纖端面的質(zhì)量,如發(fā)現(xiàn)光纖端面不符合要求應(yīng)重新制備。
4)按照光纖熔接機(jī)操作程序進(jìn)行光纖熔接, 接頭點(diǎn)衰耗應(yīng)不大于0.08db如不符合要求應(yīng)打斷重新熔接。
2.5.7光纖接續(xù)測試
2.5.7-1在測試點(diǎn),將尾纖接入OTDR,
2.5.7-2接續(xù)點(diǎn)接完一根光纖后,通知測試點(diǎn)用OTDR測試光纖接頭損耗。如不符合要求,應(yīng)重新熔接。
2.5.8光纖接頭加強(qiáng)管安裝
光纖熔接完后,用光纖接頭保護(hù)管熱熔保護(hù)。
2.5.9光纖的盤留
2.5.9-1完成光纖接續(xù)后,應(yīng)把光纖余長在盤留板內(nèi)進(jìn)行盤留。盤留時(shí)應(yīng)將A、B兩側(cè)光纖同時(shí)壓花盤留,盤留圈數(shù)控制為偶數(shù),以達(dá)到相互抵消扭力的作用。最后將光纖接頭保護(hù)管按順序放入固定槽內(nèi)。見圖2..5.9-1。
2.5.9-2按順序從下往上將盤留板翻開,每接完一層合上盤留板,依此類推,直至全部光纖接續(xù)完畢。
2.5.9-3每層光纖盤留板接續(xù)完成后,覆蓋一片塑料保護(hù)層,層與層之間和最上層都需用塑料保護(hù)片覆蓋,并通知測試點(diǎn)對(duì)每根光纖進(jìn)行復(fù)測。
2.5.10接頭盒組裝密封
2.5.10-1接頭盒的密封
(1)將接頭盒四周密封槽內(nèi)用酒精棉清洗干凈。
(2)將密封條嵌入接頭盒下半盒體密封槽,密封條要緊貼于槽內(nèi)。
(3)將未引入光纜的光纜引人口用纏繞好密封膠的堵頭封堵,密封膠纏繞高度不宜過高,高度略高于堵頭兩側(cè)擋片2-3mm為宜。
2.5.10-2接頭盒的組裝
(1)將熔接好光纖的光纜固定支架平穩(wěn)的放入接頭盒的下半盒體中,支架兩端的光纜應(yīng)處于自然狀態(tài)沒有扭力,以免光纜應(yīng)扭力太大發(fā)生轉(zhuǎn)動(dòng)傷及光纖。
(2)將接頭盒上半部分盒體與下半部分盒體扣合,此過程中應(yīng)反復(fù)檢查接頭盒內(nèi)光纖盤留情況有無移動(dòng)現(xiàn)象,以免讓盒體壓斷光纖。
2.5.10-3接頭盒螺栓的緊固
緊固盒體螺栓時(shí)應(yīng)按照先中間后兩邊對(duì)角依次的順序進(jìn)行緊固。
2.5.10-4清理現(xiàn)場工具的回收
作業(yè)完畢后應(yīng)將作業(yè)現(xiàn)場清理干凈檢查核對(duì)工具有無遺漏做好工具的回收工作。
2.5.10-5預(yù)留纜及接頭盒的放置
預(yù)留的光纜應(yīng)盤成直徑不小于1M的圓圈放置在接頭坑內(nèi),盤放預(yù)留光纜時(shí)應(yīng)由倆人操作一人抓住光纜接頭盒兩端的光纜一人盤放以免照成光纜扭動(dòng)傷及光纖。盤放好預(yù)留光纜后將接頭盒用塑料布包裹放置于預(yù)留光纜的圓圈中間。掩埋接頭坑時(shí)注意不要將較大的石塊丟于坑中以免砸傷光纜和盒體。
2.6 機(jī)具設(shè)備表
2.7質(zhì)量控制
2.7.1影響質(zhì)量的因素分析
光纖接續(xù)時(shí)的端面制作,光纖盤留,及接頭盒組裝是影響接續(xù)質(zhì)量的主要因素,因此一支經(jīng)過培訓(xùn)的專業(yè)化光纜接續(xù)測試隊(duì)伍,制定一整套科學(xué)、合理的光纜操作工藝是光纜接續(xù)質(zhì)量的保證。
2.7.2質(zhì)量控制點(diǎn)
2.7.2-1光纖端面制作。
2.7.2-2光纖的清潔狀況。
2.7.2-3光纖接頭熱熔保護(hù)。
2.7.2-4光纖的盤留。
2.7.2-5接頭盒組裝。
2.7.3質(zhì)量檢查
2.7.3-1用OTDR對(duì)光纜單盤測試。
2.7.3-2過程監(jiān)測
(1)用OTDR對(duì)每根光纖熔接過程進(jìn)行監(jiān)測。
(2)光纖接續(xù)時(shí),在熔接過程中進(jìn)行實(shí)時(shí)監(jiān)測,盤留后進(jìn)行復(fù)測。
2.7.3-3光中繼段測試
測試中繼段衰減和平均接頭損耗。中繼段衰減應(yīng)滿足設(shè)計(jì)文件要求,單模光纖一個(gè)光纜中繼段內(nèi)每根光纖接續(xù)損耗平均值不應(yīng)大于0.08dB(1300nm、1550nm)。
G.652單模光纖每公里衰減系數(shù)表:
G.655單模光纖每公里衰減系數(shù)表:
2.8安全注意事項(xiàng)
1、確認(rèn)輸出電源電壓平穩(wěn),符合儀表使用要求,并確認(rèn)儀表在關(guān)機(jī)狀態(tài)時(shí),才能插接電源,以免損壞儀表。
2、光時(shí)域反射儀系激光儀表,嚴(yán)禁肉眼直視發(fā)射端孔,以免灼傷眼睛。
3、光纖系玻璃纖維,切割下的光纖要收集在容器內(nèi),以免刺傷人。
4、接續(xù)后殘留的廢棄物如廢棄光纜、外皮、填充物、金屬芯線等,應(yīng)分類收集。
5、在公路、鐵路或其他交通道路邊施工時(shí),應(yīng)注意往來車輛,做好安全防護(hù)工作。
6、開挖接頭坑前,應(yīng)調(diào)查地下管線的分布情況,以免損傷其他設(shè)施;應(yīng)做好基礎(chǔ)防護(hù),避免塌方。汛期必須安排人員對(duì)施工區(qū)段進(jìn)行巡視,以防由于光纜溝開挖引起路基塌方。發(fā)現(xiàn)隱患必須及時(shí)派人進(jìn)行回填、加固、處理。
評(píng)論comment